Question number	Answer	Notes	Marks
1 (a) (i)	```sub into E = I x V x t; evaluation; rounding to 2SF; e.g. (E=) 2.1 x 1.5 < 12 37.8(J) 38(J)```	Correct answer without working gains 3 marks	3
(ii)	GPE $=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$;	accept: - word equations and rearrangements do not accept: - gravity for g - 10 for g - a 'units' only eqn	1
(iii)	sub into eqn; evaluation;	no POT error as eqn has ' g '	2
	$\begin{aligned} & \text { e.g. (GPE=) } 0.13 \times 10 \times 0.63 \\ & 0.82(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & 0.819(\mathrm{~J}) \\ & \text { allow } 0.802 \text { (}) \text { (} \mathrm{g} \text { as } \\ & 9.81) \end{aligned}$	
(iv)	any TWO from: MP1 energy 'lost' as heat and/or sound; MP2 mass has gained KE; MP3 mass of string has been ignored / eq; MP4 motor not 100\% efficient;	allow eqn	2

Question number	Answer	Notes	Marks
1 (b)	Any FOUR from: MP1. Current in coil ; MP2. (Creates) magnetic field (around the wires of the coil); MP3. Interaction of (this) field with that of (permanent) magnets; MP4. There is a force on the wire(of coil); MP5. Reference to left hand rule; MP6. force up on one side and down on other side; MP7. Idea that commutator reverses current (every half turn);	allow credit for points shown labelled diagram current in circuit is not enough coil becomes an electromagnet can be shown on diagram idea of catapult field reference to moment/turning effect on the coil	4

(Total for Question $1=12$ marks)

Question number	Answer	Notes	Marks
2 (a) I ii iii	0.45; Power $=$ current \times voltage; Substitution; Evaluation; e.g. $1.5=1 \times 0.45$ $\mathrm{I}=3.3$ (A) (answer to at least 2 s.f.)	no unit penalty Allow $\mathrm{P}=\mathrm{I} \times \mathrm{V}$ and rearrangements Allow reverse argument yielding 1.35 (W) for 1mark	1 1 2
(b) $\begin{aligned} \text { i }\end{aligned}$	```conversion of time to seconds; substitution into correct equation (}\textrm{E}=\textrm{I}\times\textrm{V}\times\textrm{t}\mathrm{); evaluation; e.g. time = 7 ×5 \times60 < 60 (=126 000) E=3.3\times9\times7\times5\times60\times60 3742000 (J)``` A description to include electrical; to light (and heat);	Allow solution in stages i.e. from $\mathrm{P}=\mathrm{FV}$ and $\mathrm{P}=\boxminus / \mathrm{t}$ Allow for full marks 3402000 (J) (from use of 3 A given above) $3780000(\mathrm{~J})($ from $1.5 \times 20 \times 7 \times 5 \times 60 \times 60)$ Allow max of 1 if time not in seconds, e.g. 1040 (J) (from $3.3 \times 9 \times 7 \times 5$, time in hours) 62400 (J) (from $3.3 \times 9 \times 7 \times 5 \times 60$, time in minutes) Rej ect "electricity" for the first mark Allow chemical to electrical to light for 1 mark only	3 2
		Total	9

Question number	Answer	Notes	Marks
$3 \text { (a) }$	$\text { GPE }=\text { mass } \times \mathrm{g} \times \text { height ; }$ Substitution into correct equation; Evaluation; $\text { e.g. } 0.25 \times 10 \times 1.75$ 4.375 (J)	Allow GPE $=\mathrm{m} \times \mathrm{g} \times \mathrm{h}$ and rearrangements Reject "gravity" for g in 11(a)(i) 4.4, 4.38 Allow use of 9.81 (or 9.8) $\rightarrow 4.29$ for full marks	1 2
(b)	Value given in 11(a)(ii);		1
(c) i	$\mathrm{KE}=1 / 2 \times \text { mass } \times \text { speed }^{2} ;$ Substitution into correct equation; Transformation; Evaluation; $\begin{aligned} & \text { e.g. } 3.1=1 / 2 \times 0.25 \times v^{2} \\ & v^{2}=3.1 \div 1 / 2 \times 0.25 \\ & v=4.98(\mathrm{~m} / \mathrm{s}) \end{aligned}$	Allow $K E=1 / 2 \times m \times v^{2}$ and rearrangements Substitution and transposition either order Accept 5.0, 5 and allow truncation e.g. 4.97 m / s	1 3
		Total	8

Question number	Answer	Notes	Marks
4 (a)	Any 4 of: heat loss is reduced / traps heat; relating to the air being an insulator air is a (good) insulator / air insulates / air is insulation / air is a bad conductor /air reduces conduction; relating to the blanket / fibres being an insulator blanket is a (good) insulator / blanket insulates / blanket is insulation / blanket is a bad conductor / blanket reduces conduction; relating to convection - air is trapped / blanket traps air / air movement reduced; convection (currents) reduced / convection (currents) stopped; relating to sweating - sweat cannot evaporate; (so) less cooling effect from sweating;	seen anywhere in the answer ACCEPT ‘air stops conduction / air does not conduct' ACCEPT 'blanket', 'fibres', ‘cloth', 'fabric', etc as the same thing - 'it' refers to the blanket ACCEPT 'blanket stops conduction / blanket does not conduct' ACCEPT 'air cannot move' IGNORE 'keeps out cold air' NOT ACCEPT ‘stops sweating’	4
(b)	Mark is for the reason and must match yes / no statement Any ONE of - Yes / right (Al / foil / heat) reflects; Al is a poor absorber/emitter (of radiation); No / wrong (AI / foil) is a (good) conductor / bad insulator;	IGNORE shiny ACCEPT answers that refer to the blanket if they imply a relevant point, e.g. 'no, because the blanket would conduct away less heat'	1

Total 5 Marks

Question number	Answer	Notes	Marks
5 (a)	A (chemical \rightarrow electrical \rightarrow kinetic)		1
(b) (i)	$K E=1 / 2 \times m \times v^{2}$;		1
(ii)	substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 1 / 2 \times 600 \times 28^{2} \text {; } \\ & 240000(\mathrm{~J}) \text {; } \end{aligned}$	correct answer = 2 marks ACCEPT 235200 (J);	2
(c) (i)	gpe $=$ mass $\times \mathrm{g} \times$ height;	ACCEPT GPE $=\mathrm{mgh}$ ACCEPT gravitational field strength/acceleration due to gravity for g	1
(ii)	substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 600 \times 10 \times 1000 \\ & 6000000(\mathrm{~J}) \text { or } 6000 \mathrm{k}(\mathrm{~J}) \text { or } 6 \mathrm{M}(\mathrm{~J}) \end{aligned}$	correct answer = 2 marks ALLOW 5880000 (from g = 9.8)	2
(iii)	EITHER Calculation of energy supplied (by fuel cells) $24 \mathrm{~kW} \times 180 \text { s OR } 4320000 \text { (J); }$ Comparison with energy required $4320000<6000000$ OR Calculation of power required $6000000 \mathrm{~J} \div 180 \mathrm{~s} \text { OR } 33.3 \mathrm{~kW} \text {; }$ Comparision with fuel cells $33.3 \text { kW > } 24 \mathrm{~kW} \text {; }$	ALLOW ECF if 6000000 not seen ALLOW ECF if 6000000 not seen	2

Question number	Answer	Notes	Marks
5 (c) (iv)	use of $\mathrm{P}=\mathrm{I} \times \mathrm{V}$ for one cell ; e.g. 30×0.6 OR 18(W) calculation; e.g $24000 \div 18=1333(>1300)$ OR $1300 \times 18=23400(<24000)$ ALTERNATIVE Using $\mathrm{E}=\mathrm{IVt}$ for one cell; e.g. $30 \times 0.6 \times 180$ OR 3240(J) calculation; e.g. $4320000 \div 3240=1333(>1300)$ OR $1300 \times 3240=4212000(<4320000)$	First Marking Point can be credited if ' 18 ' or '30 $\times 0.6$ ' seen in calculation	2

Question number	Answer	Notes	Marks
6 (a) (i) (ii)	gravitational potential energy $=$ mass xg x height Substitution into correct equation; Calculation; e.g. $\begin{aligned} & \text { GPE }=2.75 \times 10 \times 0.61 \\ & =17(\mathrm{~J}) \end{aligned}$	Allow symbols and rearrangements, e.g. GPE $=m \times g \times h$ $16.8,16.775,16.78$ (J) allow calculation with $\mathrm{g}=$ 9.81 $=16.46$ (J)	1 2
(iii)	Any two of- MP1. idea that system is inefficient OR not 100\% efficient; MP2. idea that energy is lost / wasted / dissipated ; MP3. explanation / detail of fate of energy; e.g. used when working against \{friction / drag / air resistance\} as thermal energy to parts of the apparatus or surroundings transferred to surroundings by sound converted into KE as mass fell	condone used / transferred elsewhere Need mention of 'object' Ignore light allow to overcome friction allow heat for thermal energy	2
(iv)	Substitution into correct equation; Calculation; e.g. Energy transferred $=0.46 \times 12.7 \times$ 1.3 7.6 (J)	allow answer without working or equation seen (7.5946)	2
(b)	three of the following ideas- MP1. water has (initial) GPE; MP2. KE of (moving) water; MP3. Work done on turbine / generator; MP4. Work done against magnetic force; MP5. Electrical energy/power/current/voltage (produced);	allow KE in turbine / generator	3

Question number			Answer	Notes	Marks
7	(a)		C (the walls)		1
	(b)		D (40\%)		1
	(c)	(i)	Any two of - - Fibres are good insulators / bad conductors; - Air is a bad conductor / good insulator; - Because air particles are widely spaced; - conduction requires solids/does not occur in gases;	no marks for - 'air is trapped' as is given in stem - conduction/convection mechanism described e.g. air can't convect up through layers	2
		(ii)	stopping /reducing (formation of) convection currents; air in the insulation can't move/eq;	allow air is trapped fibres prevent movement of air	2

Total 6 marks

Question number			Answer	Notes	Marks
8	(a)		Substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } \\ & 1.3 \times 10.3 \times 4.7 \text {; } \\ & 63(\mathrm{~J}) ; \end{aligned}$	No credit for merely quoting the equation as $\mathrm{E}=\mathrm{IVt}$ is given on p 2 . $62.9 \text { (J) }$	2
	(b)	(i)	Work done $=$ force \times distance moved (in the direction of the force);	Accept rearrangements and symbols $\begin{aligned} & \text { e.g. force }=\frac{\text { work }}{\text { distance }} \\ & W=F \times d \\ & F=W / d \end{aligned}$	1
		(ii)	Substitution into correct equation; Calculation; e.g. Work done $=20 \times 0.85$; 17 (J);		2
		(iii)	Value given in 8(b)(ii);	Allow GP(E)	1
	(c)	(i)	Efficiency = useful energy output divided by total energy input;	Accept efficiency in terms of work or power and percentage e.g. Efficiency $=($ work out $/$ work in) $\times 100 \%$	1
		(ii)	17 divided by 63; 0.27	Allow ecf answer from b(ii) [or (b)(iii)] divided by answer from (a) Allow 27\%	2

